Friday, July 10, 2015

The Battle for Safety at Pilgrim Nuclear Plant (secret cell phone recording of NRC officials)

Yesterday I was listening in on the NRC’s meeting with Pilgrim plant concerning their SRVs on my cell phone At the end of the meeting I trying to wake up my cell phone, trying to prepare for the beginning of the public comment part of the meeting. I dropped the phone call and had to call back. I was shocked to learn there was no other people willing to make a comment or ask a questions to the NRC when I called right back. By the time I called back, the meeting had ended. I made notes for discussion with the NRC officials for the public part of the meeting. Generally the NRC will just let me give my spiel, they won’t openly discuss the issues with me. I immediately called the meeting contact person Mr. McKinley thinking he would schedule a phone discussion over the SRVs later. I thought I was just leaving a voice recording on his phone. He answered my call and immediately wanted to discuss my issues. I have on phone recording app on my cell phone for years…I record automatically every phone call on my cell phone.
Basically I feel the NRC employees and especially the agency's operating plant staff are extraordinarily people...but bad national policy is inhibiting the employees from driving dangerous chaos out of the national fleet. They are a captured agency. 
This might be a big deal if a big and embarrassing nuclear event occurs in the industry within the next few years, especially concerning Pilgrim.  
Technically recording the phone call without getting consent is illegal…especially if it is a government official.  I certainly risk being taken to court over this or my special access to the NRC is going to come end. I thinks this discussions reflect very well on these employees and the NRC in the whole.
 
From McKinley, Raymond 
To steamshovel2002@yahoo.com 
Thu, Jul 9, 2015 11:59 AM EDT 
Mike,
Thank you for listening in on the enforcement conference and providing your insights yesterday evening. You asked a question about how the LOOP initiating event frequency factored into the risk analysis and if that initiating event frequency is ever updated. I reached out to one of our Senior Risk Analysts, and I think I can better address that question. If you have some time, I can give you a call or you can call me. We can set up a time today or on Monday to discuss further. Let me know if you are available.
Thanks,
Ray McKinley Chief, Division of Reactor Projects, Branch 5 U.S. NRC Region 610-337-5150

We discussed this below 2.206 in 2013...I read this below italicized paragraph to Mr McKinley. I clearly stated the date. The NRC
2.206: "The repeated nature of the failure of the safety relief valves means Entergy doesn't know the mechanism of the failure.. .it is a common mode failure. The design and manufacture of these valves are defective and it is extremely unsafe to operate a nuclear plant with all safety relief valves being INOP. A condition adverse to quality..." 
discovered during the 2015 inspection Entergy had failed to disclose a SRV failed to operate in the 2013 blizzard LOOP. I believe Entergy "not disclosing" this on their own in 2013 should have led to a red finding whether from sloppiness or an intentional falsification. I didn't like Mr. Kckinley's response to me. I won't get confrontational to him in this setting, after all I need to respect he is a high US governmental official. He said nobody in Entergy or the NRC knew at the 2013 time frame the SRV's were defective or should be considered a common mode failure. Everyone realizes my below italicized is a true statement today. How come I knew in 2013 these valves were defectives valves and Entergy and the NRC didn't didn't...I had the information in their document system. Remember energy yanked out the three stage SRVs in the spring 2015 outage because they were unsafe. They are a defective design.

Further, the NRC was negligent with knowingly allowing Pilgrim to start-up with these defective components, allowed Pilgrim to get into the next outage just a month or two away. Months later in the 2015 outage the NRC mysteriously discovered the failure of the SRV to operate, Pilgrim burying this in their documents and not reporting it to the agency. This SRV failure to operate discovered by the NRC forced Pilgrim to remove the defective 3 stage and replace it with the 2 stage. This whole vendor dragging their feet on the SRV investigation and the incompetence of pilgrim supporting the operational period between the 2015 blizzard and the outage stinks with allowing the plant to operate with bad valves for convenience. Basically dragging your feet on investigations and false reporting to the NRC pays off allowing pilgrim to get to the outage. They replaced the unsafe valves in the outage. I contend these valves were unsafe before they put them in the plant and entergy and the NRC should have known it.
If the agency post blizzard 2015, and even in Blizzard 2013, if the agency did a complete and competent investigation of the undying material facts of the SRVs, they would have discovered in the available information and documentation, certainly post 2015 blizzard, those SRVs were dangerous. If the NRC would have uncovered all the facts and the available evidence, the agency would have force Pilgrim to replace those SRVs before state-up.
There is nothing but mostly licensee and NRC not challengable assumptions behind all of this including the violation level. They play these games in the dark and they have nothing to be afraid of.       
As these officials told me, the complexity of poor design of these valves and the degradation mechanism...the situation is too complex to model. The NRC was forced to go outside their risk modeling and basically depend on the skill of the craft to come up to a violation level.

It is extraordinarily simplistic and constitutes a falsification, everyone using just two valve failures as keying a violation level. You see the dangerousness what they are setting up, it is the best view of information they selective chose to show the public. It is not the full story. It is nothing but a pyramid scheme based on not public information...you seeing a false facade they are projecting to you.

We are talking about high government expert officials...to explain to me how they came up with the violation level. The first official called in the region I risk specialist, then the second official needed or wanted to call in laboratory to complete the discussion surrounding the violation level and the LOOP frequency. It is so complex, they need to keep calling these experts with a higher education, it becomes a bottomless black hole with never an answer to your question.               
2.206: Request Emergency shutdown of Pilgrim surrounding their SRVs 
March 7, 2013:
"The repeated nature of the failure of the safety relief valves means Entergy doesn't know the mechanism of the failure.. .it is a common mode failure. The design and manufacture of these valves are defective and it is extremely unsafe to operate a nuclear plant with all safety relief valves being INOP. A condition adverse to quality..."    
Request:  
1) Request an immediate shutdown the Pilgrim Plant.

2) This is the second time I requested a special NRC inspection concerning the defective SRV valves.

3) Not allow the plant to restart Pilgrim until they fully understand the past failure mechanisms of the four bad new three stage safety relief valves.

4) Request the OIG investigate this cover-up to keep an unsafe nuclear plant at power.

Thursday, July 09, 2015

NTSB Urges Cameras For Amtrak Nuclear Power Plants

Why do you think the US public has never seen a actually plant trip or accident through a video recording? 

But of the extraordinarily protectiveness of the NRC protecting the nuclear industry...not mandating recorders in the control room. 
NTSB urges cameras for Amtrak trains 
The National Transportation Safety Board on Wednesday urged Amtrak to install "crash- and fire-protected inward- and outward-facing audio and image recorders" on all locomotives.  
The recommendation came in response to the May 12 derailment of Amtrak Train 188 in Port Richmond that killed eight passengers and injured 200. 
Amtrak CEO Joseph Boardman said last month that Amtrak would install inward-facing video cameras in all of its 300 locomotives, starting with 70 Siemens locomotives now being put into service on the Northeast Corridor. 
Amtrak trains already have outward-facing cameras.
The NTSB, which has been pushing for cameras for years, said it was encouraged by Amtrak's actions, "but believes that additional requirements for a complete inward- and outward-facing audio and image recorder system are necessary." 
The NTSB also asked for semiannual public progress reports on installing the recorders, since Boardman did not specify how soon they would be in place. 
Such recorders would assist crash investigators and help Amtrak supervisors determine if crew members are following operating rules, the NTSB said in a letter sent Wednesday to Boardman by NTSB Chairman Christopher Hart. 
The union that represents Amtrak engineers, the Brotherhood of Locomotive Engineers and Trainmen, has opposed the cameras as an invasion of privacy. 
Union officials did not respond Wednesday to a reporter's requests for comment on the NTSB recommendation. 
Last month, Dennis Pierce, president of the Brotherhood of Locomotive Engineers and Trainmen, told a House committee that "installation of cameras will provide the public nothing more than a false sense of security."  
"These cameras are an accident-investigation tool and not an accident-prevention tool," Pierce said. "Not a single life would have been saved if the locomotive cab on Amtrak 188 had been equipped with an inward-facing camera." 
Amtrak spokesman Craig Schulz said, "Amtrak is reviewing the NTSB recommendations and will incorporate them, as appropriate, into our plan to install inward-facing cameras in the locomotive fleet."


Indian Point 3 Confusion

Now it makes sense...

IP3 returns to service
BUCHANAN – The Indian Point nuclear power plant Unit 3 returned to service on Thursday afternoon after it was manually shut down on Wednesday when control room operators observed fluctuating water levels inside a steam generator.
Operators determined that one of the unit’s three condensate pumps, which is part of the system that feeds water into the plant’s steam generators, automatically shut down while the unit was operating at full power, causing water levels inside the steam generator to fluctuate.
The three condensate pumps are located on the non-nuclear side of the plant. The unit is operating safely on two condensate pumps while engineers and mechanics repair the third.
Unit 2 continues to operate at full power.
Entergy spokesman Jerry Nappi said earlier Thursday that workers were making repairs to one of the water pumps that shut down the reactor, which was expected to return to service by Saturday.
I wonder why this newspaper got it wrong...Entergy feeding them bum information? 
Wednesday's shutdown was the latest incident at the power plant over the last few months. 


Downed Indian Point reactor due back online 
A tanker goes past Indian Point on May 11, two days after a transformer explosion released oil into the Hudson River.(Photo: Ricky Flores/The Journal News)Buy Photo
Entergy expects its down Indian Point nuclear reactor to start pumping out electricity again by the week's end, a spokesman said Thursday. 
"They are making repairs to one of the water pumps that shut down Unit 3," Entergy spokesman Jerry Nappi said. "We expect the plant to be back up by the end of the week." It should be running by Saturday, he said. 
A malfunctioning water pump forced operators to shut down the Unit 3 nuclear reactor at about 2:30 p.m. Wednesday. The plant's second reactor - Unit 2 - continues to operate at full capacity...
The 1% indicates they tried to startup...now they are talking about the end of the week end. Something doesn't add up? 


UnitPower
Beaver Valley 1100
Beaver Valley 2100
Calvert Cliffs 1100
Calvert Cliffs 2100
FitzPatrick100
Ginna100
Hope Creek 1100
Indian Point 2100
**********Indian Point 31
Limerick 1100
Limerick 2100
Millstone 2100
Millstone 3100
Nine Mile Point 1100
Nine Mile Point 2100
Oyster Creek100
Peach Bottom 2100
Peach Bottom 3100
Pilgrim 1100
Salem 1100
Salem 2100
Seabrook 1100
Susquehanna 1100
Susquehanna 2100
Three Mile Island 1100

Saturday, July 04, 2015

The Future According to Deminion

It is the best option according to the rules...not what is best to the locale.


The moral of this story they want the utilities to borrow money or go into the bond market…they’d prefer the equipment you buy don’t work. They just want you to borrow and borrow and borrow with no need to do good. 

Three of the plans would result in retirements of coal capacity, including units three and four of the Chesterfield Power Station, the utility’s largest coal-fired generating plant, along with two more in Mecklenburg County and one in York County.
  • The cheapest alternative involves adding 4,000 megawatts of utility-scale solar, which would require land space almost as large as the city of Richmond and cost an additional $4.3 billion. The plan also calls for additional natural gas generation as a backup for peak periods, since solar energy isn’t always reliable and currently can’t be stored.
  • Converting coal plants to use natural gas for one-quarter of their electricity production (co-firing plants) while also ramping up solar and natural gas would cost about $5 billion more but would increase even further the company’s reliance on natural gas.
  • Adding a third nuclear reactor at the North Anna plant in Louisa County would reduce carbon emissions more than any other option, but at $7.2 billion it would cost about 67 percent more than the solar option
  • Focusing on offshore wind would cost $15.3 billion, a price that all but takes that plan off the table unless Dominion can find a way to reduce costs. The company recently delayed plans to install offshore turbines as a test case when the price was nearly double the company’s $230 million estimate.
Dominion weighs each of the options based on growing demand and reliability as well as cost.
“Utility-scale solar looks very good to us. It’s the lowest-cost deal, but there’s a lot of analysis to be done, so it’s not a done deal yet,” Wohlfarth said.
Environmental groups have called on Dominion to rely on renewable energy such as solar and wind power to meet the growth in demand, which is expected to be about 1.5 percent per year.
“If Dominion were looking out for the best interests of Virginians, it would prioritize aggressive investments in solar, energy efficiency and offshore wind and stop doubling down on dirty fracked
gas,” said Mike Tidwell, director for the Chesapeake Climate Action Network.



Wednesday, July 01, 2015

Mike Mulligan’s National Nuclear Plant Decommissioning Plan

Let’s say Vermont Yankee has $600 million dollars in their decommission fund.

We set up a national nuclear plant decommissioning agency. It could be in the NRC or DOE.  They would be tasked with decommissioning a plant within 10 years and returning the property into a mostly green field. There would be tremendous efficiencies with a centralized single organization running the show national wide. You could have a rock solid government core employee base with the best education and skills base (the best of what a centralized and hierarchal  organization can do for you) to decommission the plants or contracting it out. The power of government could enforce the cost and quality of decommissioning...the power of governmental mandated transparency would insure safety and mandated public and community participation. We just get the corporation sticking their middle fingers at everyone right now. It would be really inefficient to do it corporation by corporation or plant by plant.
You’d be making a negotiation and then a contract with the owners to take over the decommissioning fund and then complete decommissioning. It would be in agreement  with who then owns the property. So you would negotiate with Entergy saying the NRC/DOE would take over the complete decommissioning of VY if you throw in another $100 million dollars ($600 plus another $100) or something. I am sure Entergy would jump at the chance with getting rid of this stinking dead dog.
The excess cost you’d grab by putting excess decommissioning cost in the national tax base.  I am sure this would be just a matter of a few dollars for each of our corporate and individual taxes.  It would be a win win for these nuclear corporations and it would professionally put quickly to bed these decommissioned nuclear plants. We would have a national standard on the time a plant sits in the decommissioning and it would be set by government
I hope a deal like this would be the beginning of an interim fuel storage area and then onto a permanent storage.  
This then will give the nuclear utilities the option if their plants were financially hanging on by a thread and collectively a burden to the corporation, they would just dump the dinosaur into permanent  shutdown and the decommissioning negotiations with the national decommissioning agency. It would make the offending hulk of plant dinosaur disappear from their corporate books. They could focus their assets and resources with running and maintaining the remaining plants.  

Dumping the dying dinosaur plants into decommissioning would create an incentive to go into green energy and dump the oldest and financially most shaky nuclear plants into permanent shutdown. Maybe even prepare for the new nuclear plant rebuild.  It could head off disgracing the NRC and the owners in a financial large nuclear plant mishap or even head off a nuclear plant meltdown in the most probable nuclear plants.  You could consolidate the NRC  and nuclear plant employees into a smaller number of plants making everyone operate better and safer.   
This is just a general draft of a plan or idea. What would you have as a solution or plan for this growing problem. We got to deal with these problems. There will never be a pure ideological fix.       

Brattleboro Reformer Is On Artificial Respiration and Brain Dead

I don't think the" Commons" is diversified enough to pick up the slack. More low pay and crap volunteerism.

They get what they deserve...

Digger

Brattleboro Reformer, Bennington Banner, Manchester Journal lay off editorial staff
New England Newspapers Inc., has laid off 10 editorial employees in Vermont and Massachusetts.

 Five newsroom employees in Vermont were handed pink slips on Friday.

No formal announcement has been made by the newspaper chain, which includes the Brattleboro Reformer, the Bennington Banner, the Manchester Journal and the Berkshire Eagle in Pittsfield, Massachusetts.

The company laid off three newsroom staffers at the Reformer. Tom D’Errico, the manager of content marketing, Mike Faher, senior reporter, and Pat Smith, the newsroom clerk, were given notice on Friday. On June 12, Michelle Karas, the managing editor of the Reformer and the Banner left earlier to take a job at The Colorado Springs Gazette. The Banner laid off newly hired reporter Jacob Colone, and the Journal let go of Brandon Canevari.

That leaves skeleton crews at all three newspapers. Andrew McKeever, the editor of the Journal, has no reporter on staff. There will be just two reporters at the Reformer, Dominic Poli and Howard Weiss-Tisman, as reporter Chris Mays has been dispatched to the Banner where he will work with Keith Whitcomb and Derek Carson.

Kevin Moran, the regional vice president of the New England Newspapers, was not immediately available for comment.

The Reformer building is listed for sale.

New England Newspapers is part of the troubled Digital First Media newspaper chain, which owns newspapers in 15 states, including The Denver Post, the Los Angeles Daily News, the San Jose Mercury News, New Haven Register and the St. Paul Pioneer Press.

Apollo Global Management, a hedge fund, was poised to purchase the company in the spring, but backed out. Not long after, John Paton, the CEO of DFM, stepped down, according to Jim Romensko, a newspaper industry reporter. In recent weeks, Digital First sold off properties in New Mexico and Texas to Gannett, according to the Poynter Institute blog. 

On Friday, The Saratogian and the Troy Reporter in New York announced layoffs and voluntary buyouts for 11 editorial staffers.

Tuesday, June 30, 2015

Indian Point is Turning Into Junk

Pretty pathetic excuses the failed paper insulation  and the faulty valves. How come, asking coming from such a expensive and invaluable reliability piece of gear, why was it paper?
I could make the case the intense activity forcing Entergy to spend money on Pilgrim, Fitz and Indian Point is diluting the resources from Entergy's Region IV plants. 
These are closely related components: why isn't this indicative of the maintenance and reliability quality problems plant wide. The idea of two problem and especially closely related components jumping out failing in one event is very worrisome. There are over 5 million parts in one plant, and this is a aging obsolete two plant facility... only a teeny percentage of component going bad can wrought terrible trouble to a plant and a fleet of plants. I think this site is getting insufficient maintenance funding just like Pilgrim, River Bend, Grand Gulf  and Waterford. Entergy is in trouble!!!

  • Entergy, the nuclear plant's operator, announced Tuesday the failed insulation — made of special paper — caused a short circuit in a high-voltage coil.


  • The company concluded that some sprinkler valves malfunctioned and didn't automatically close as designed. 


Faulty insulation caused Indian Point fire, oil spill
Ernie Garcia, elgarcia@lohud.com 5:02 p.m. EDT June 30, 2015The company regularly inspects its insulation for signs of degradation, but no problems were seen before the fire.

A tanker goes past Indian Point on May 11, two days after a transformer explosion released oil into the Hudson River.(Photo: Ricky Flores/The Journal News)Buy PhotoStory Highlights
  • About 3,000 gallons of transformer oil spilled into the Hudson River
  • Transformer oil is similar to mineral oil or baby oil

An insulation failure in a transformer caused the May 9 fire at the Indian Point Energy Center that spilled about 3,000 gallons of oil in the Hudson River. 
Entergy, the nuclear plant's operator, announced Tuesday the failed insulation — made of special paper — caused a short circuit in a high-voltage coil. The company regularly inspects its paper insulation for signs of degradation, but no problems were detected before the fire near the Unit 3 generator. 
No radiation was released during the fire and the generator automatically shut down as designed; it resumed service May 25. Entergy said it will continue its analysis of the paper insulation. 
"We have been working closely with independent engineers, and with federal and state agencies, to address issues surrounding the May 9 transformer failure, and corrective actions are well under way," said Bill Mohl, president of Entergy Wholesale Commodities, the Entergy business unit that owns Indian Point. 
"These actions reinforce our commitment to environmental responsibility and transparency, as well as the continued safe, secure and reliable operation of Indian Point," he added. 
The transformer contained 24,300 gallons of dielectric fluid, a clear mineral oil that serves as a cooling agent and insulation. About 8,300 gallons of oil have been recovered from the moat beneath the transformer, inside the transformer, drains and areas around the transformer yard, or were burned in the fire. 
Contractors are investigating the transformer yard and other areas on site to see if more transformer oil can be recovered and prevent any potential migration. Six shoreline locations required environmental cleaning, which was completed June 5. 
In another investigation related to the fire, Entergy staffers looked at why water from fire sprinklers accumulated in a building that contains electrical equipment powering some of the plant's safety systems. The company concluded that some sprinkler valves malfunctioned and didn't automatically close as designed. 
None of the electrical systems were damaged by the water. Entergy is modifying its preventive maintenance and testing to ensure the sprinkler valves operate properly.
The U.S. Nuclear Regulatory Commission began a special inspection of Indian Point related to the accumulated water on May 19. That inquiry continues.

Monday, June 29, 2015

Fort Calhoun going nuts on Us.

June 29, 2015

You would think after spending all that money post flooding they would stay out of trouble. Remember they restarted after three years of shutdown. They continue to have a poor record.

Why did it take some twenty some odd days to decide they need a special inspection?

Did the vendor provide unsafe materials or did employees purchase unsafe material...   
NRC to Begin Special Inspection at Fort Calhoun Nuclear Station
The Nuclear Regulatory Commission has begun a special inspection at the Fort Calhoun nuclear plant to review circumstances surrounding a June 5 reported failure of an auxiliary feedwater valve that controls water flow to the steam generator. The plant, operated by Omaha Public Power District, is located 19 miles north of Omaha, Neb. During a refueling outage, workers replaced seal material in a valve that controls cooling water flow into one of the steam generators. During testing, the valve failed to open as designed. Workers discovered that the new seal material was not adequate for the operating temperature of the valve. The seal material was replaced with a material rated for higher temperatures. Following successful testing, the plant resumed start up activities.
Originally Posted 6/19/2014

June 23:

They never required a shut down...

June 22:

Advance Hydrological Prediction Service...last 30 day precipitation levels 




So the ground is saturated. How long should Fort Calhoun be shutdown. Say they start up in a few days...will they then have to shut down by the end of the week because of new flooding? Remember the industry says every shutdown damages non safety and safety components in a nuclear plant...they been bragging about their plant damage for decades as a excuse for not shutting down when required or for limiting safety regulations.

Do we want them shutting down and restarting all the time on a weekly bases...popping up and down all the time?

Should they remain shutdown until there is good proof this abnormally wet period is over...

Break in storms should keep Missouri River from flooding Omaha and Bluffs
Posted: Sunday, June 22, 2014 12:04 pm
By Kevin Cole / World-Herald staff writerThe Omaha World-Herald
A meteorologist said Sunday that an expected break in the recent cycle of thunderstorms should keep the Missouri River from reaching flood stage at Omaha and Council Bluffs.
"I’d expect the river to go up a little bit over the next 24 hours before starting to decline fairly quickly," said Tom Kines of AccuWeather.
"Monday will be kind of a transition day as the river holds steady for a time."
The National Weather Service in Valley reported the river at 27.8 feet Sunday morning for Omaha and Council Bluffs where flood stage is 29 feet. The weather service is predicting the river at Omaha will be at 24.8 feet by Wednesday and down to 18 feet Friday.
"The wide spread storms that we’ve seen are probably done with for awhile," Kines said. "There is a chance of a pop-up shower on Monday, but most of the day will be dry."
That’s good news for college baseball fans as Virginia and Vanderbilt begin their best-of-three championship series Monday night at 7 p.m. in TD Ameritrade Park. The teams will meet again Tuesday night, and if necessary, on Wednesday.
A weak front dropping down from the northwest is expected to bring drier, less humid air to eastern Nebraska and western Iowa on Tuesday, Kines said. He said Tuesday’s forecast is for a "really good day" with drier, less humid air and temperatures in the mid-80s.
"I suppose the grass will grow 20 feet, but Tuesday will be about perfect for anything you want to do outside," he said.
By mid-week the front is expected to push back north, creating a chance for the return of rain showers, Kines said. As the humidity returns, he said, the chances for rain will increase.
"There will be chances of thunderstorms both Wednesday and Thursday," he said. “How much rain we’ll get and how wide spread the storms will be is hard to say right now."

One could look at the number of LERs a plant gets per year to give yourself an idea of how far out of licensing the Fort Calhoun plant has been…

Normally a plant gets 3 or 4 LERs per year, maybe less….

2014: 12
2013: 35
Once you get onto the north side of 2005 till today,  it is amazing the escalation of the numbers of LERs. I wonder what has changed?
2005:3
2004:3
2003:5
Do you see how abnormal this is…two shutdowns within 3 years because of flooding?  Most plants don’t challenge their flooding limits through the life of their license. Obviously today it is a siting design defect. The plant isn’t designed for the climate. How many more shutdowns will this plant face in the future?
It is a Fukushima siting thing…2000 feet west of the plant the elevation rises 100 feet.  

The Ongoing 2011 Accident at Fort Calhoun Nuclear Plant

Event Notification...Is this part of a strengthening El Nino?

TECHNICAL SPECIFICATION REQUIRED SHUTDOWN
"The National Weather Service predicts that the Missouri River level at Fort Calhoun Station will exceed 1004 feet above mean sea level on 6/20/14 at approximately 2300 CDT. Fort Calhoun Station will begin a ramp down in power to satisfy technical specification 2.16 which states, 'When the Missouri River level reaches elevation 1004 feet mean sea level, the reactor shall be in a HOT SHUTDOWN condition [Mode 3] and in Cold Shutdown [Mode 4] within 36 hours following entry into Hot Shutdown.' The river level is currently 998 feet 3 inches and rising approximately 0.5 inches per hour. At time 0001 CDT 6/20/14 Fort Calhoun station will initiate a plant shutdown to Hot Standby and will proceed to a Cold Shutdown condition within 36 hours following entry into Hot Shutdown, as required."

The licensee notified the NRC Resident Inspector.

River Levels on the Rise – The NRC At The Ready

by Moderator
Lara Uselding
Public Affairs Officer
Region IV
Three years ago this month marks the anniversary of the record Missouri river floods. Now, due to heavy rains, the NRC is once again watching rising Missouri River levels impacting Nebraska’s Fort Calhoun nuclear power plant, north of Omaha.
Cooper Nuclear Station in Brownville is not anticipating a major impact this weekend.
Fort Calhoun’s procedure requires them to declare a Notice of Unusual Event and be shut down by the time river levels at the site reach 1,004 feet mean sea level. Thursday afternoon, river levels were at 998 and rising. Normally, river levels at the site range from 980 to 990 feet mean sea level.
Over the past week, NRC’s Region IV in Arlington, Texas, has been engaged in routine calls with the United States Army Corps of Engineers, National Weather Service, Federal Emergency Management Agency, National Oceanic and Atmospheric Administration, states, and local response organizations to understand changes in the predicted river levels and assess potential impacts on the plants.
Simultaneously, the NRC has been overseeing actions that Omaha Public Power District (Fort Calhoun) and Nebraska Public Power District (Cooper) are taking to protect the plant against impending flood waters. At this time, river levels at Cooper are not projected to be high enough to require a plant shutdown.
OPPD’s actions involve the use of sand bags, flood doors, and readying mobile pumps as river levels are projected to rise. They have also ordered equipment to protect certain buildings on site. NRC resident inspectors, who live in the area and work at the plant, have been monitoring the flood preparations.
The NRC is sending more staff to the plant to support the resident inspectors and provide around the clock coverage. During the 2011 flood, river levels at Fort Calhoun reached about 1007 feet and the plant remained in a safe shutdown condition. The plant restarted late last year only after extensive flooding improvements and other safety upgrades mandated by the NRC. Fort Calhoun remains under increased NRC regulatory oversight.
Region IV will continue monitoring the situation for both plants over the weekend.

Friday, June 26, 2015

The WENRA Findings in Doel-3 and Tihange-2

The question I have is:

1) If they would have just had a paperwork search in Doel-3 and Tihange-2, would they have discovered the flakes in their reactor vessel or inadequate inspection methods questioning if flaws were there?

2) In the USA, is the hydrogen concentration in the metal of such a concentration it would question if flakes could be in US reactors? 

3) What is the status of cladding flaws or corrosion in all USA vessels... 

Why hasn't the NRC required this from our licencees:  
"In response to the findings in the Belgian reactors, WENRA recommended in 2013 the nuclear safety authorities in Europe to request the licensees to verify the material quality and integrity of the RPV in a 2‐step approach: 
1.        A comprehensive review of the manufacturing and inspection records of the forgings of the RPV. 
2.        Examination of the base material of the vessels if considered necessary." 
The NRC stance to date has been, the licencees has scrupulously followed the 1970s NRC new vessel codes and regulations proving they have no flakes. It's as if the agency believes following any old rule or code proves the vessels are safe. I saying, are the 1970s codes and regulation adequate to disclose similar hydrogen flakes in USA vessels?
 
The NRC believes it is not limited to the Belgium vessel manufacturer...it is a similar forging process worldwide.  
NRC INFORMATION NOTICE 2013-19: QUASI-LAMINAR INDICATIONS IN REACTOR PRESSURE VESSEL FORGINGS
 September 22, 2013: While the forgings in the European NPP were manufactured by Rotterdam Dockyard (using ingots supplied by Friedrich Krupp Hüttenwerke (Krupp)), there is no evidence of any factors unique to the forging practices of the Rotterdam Dockyard, or the practices used by Krupp in making the ingots, which suggest an increase in the likelihood of developing quasi-laminar indications during the fabrication process in comparison to other forging manufacturers.
This crux of the issue with my 2.206: The NRC didn't specifically state the licencees would have positively detected hydrogen flakes in new forgings (1970s) and they did a full safety analysis saying there is no safety issues. Course, now we have new inspection technology and we have massively increased our knowledge of metallurgy since first startup. 

I am saying also, it is a unacceptable with our aging fleet of nuclear plant vessels we aren't doing UT inspections in areas outside the weld strips. This might include a representative sample of the vessel walls in the end, after we understand what is going on. I think having greater than 99% of the vessel walls not ever being ud't once operations began is not acceptable.      
2013-19: ASME Code, Section III, requires the UT examination of all forgings during the fabrication process and specifies the acceptance criteria. Per Section III, a forging is considered to be unacceptable if the UT examination detects the presence of reflectors that produced indications resulting from discontinuities in the material accompanied by a complete loss of back reflection from the far side of the structure. The applicable Codes required that the examinations be performed in accordance with ASTM SA-388; this document defines the recording criteria implemented for the RPV forging examinations. Licensees are required to maintain all fabrication records, including NDE and acceptance records; therefore, licensees should have records of the NDE performed on RPV forgings during fabrication. If recordable quasi-laminar indications were detected during the fabrication of any RPV, Section III of the ASME Code would require the indications to be compared to the examination acceptance criteria.

Unacceptable indications would require repair in accordance with the ASME Code, Section III.
So the material characteristics, the strength and ductility of the metal flakes though laboratory testing as we understand it, is being questioned...    
"Safety Case 
Before being allowed to restart both Doel 3 and Tihange 2 reactors, Electrabel shall first submit a Safety Case to the FANC in which it convincingly demonstrates that the presence of hydrogen flakes in the walls of the reactor pressure vessel (RPV) does not compromise its structural integrity. This Safety Case must be structured around three major topics, corresponding each to a chapter of the action plan that Electrabel is due to implement:  
1. The ultrasonic inspection technique of the RPVs: detection, measurement and location of hydrogen-induced flaw indications.
2. Material properties of specimens containing hydrogen flakes: radiation effects and transferability of the test results to the Doel 3 and Tihange 2 RPVs.
3. Structural integrity of a RPV containing hydrogen flakes.
The results of the actions related to theme 1 and theme 2 will provide the input for theme 3."    
Next steps of the review process
After completing every action related to themes 1, 2 and 3 and interpreting the results, the licensee Electrabel will submit its Safety Case to the FANC. The FANC and its technical subsidiary Bel V will thoroughly review this Safety Case using the specific expertise of the recognised inspection organisation AIB Vinçotte (for theme 1), the International Review Board (for theme 2) and an external research team (for theme 3). The FANC will collect opinions from all these parties and take them into account to decide whether Electrabel is allowed to restart the Doel 3 and Tihange 2 units. This process will take another few months. 
 Excerpts: 
Report: Activities in WENRA countries following the Recommendation regarding flaw indications found in Belgian reactors
17 December 2014
01 Background
01.1 The findings in Doel-3 and Tihange-2
In 2012 a new type of in‐service inspection (ISI) of the reactor pressure vessel (RPV) by ultrasonic testing (UT) was introduced in Belgian nuclear power plants. These inspections were introduced earlier in France to search for underclad cracks that may be present in the base metal directly below the interface to the cladding. These underclad cracks, if present, have perpendicular orientation to the surface and were created by the welding process of the austenitic strip cladding onto the ferritic base metal. 
Yet, in the RPV wall of Doel‐3 and Tihange‐2 these inspections did not find any underclad cracks but a large number of flaw indications, located at different distances from the surface in the lower and upper vessel forged rings. As this technique is not suitable to find any flaws far from and nearly parallel to the surface, additional UT with straight beam (0°) was applied. With this technique, thousands of nearly laminar indications were found at larger depths of the base metal, mostly planar and nearly parallel to the surface of the RPV. 
Following a number of investigations and evaluations, the UT indications in the RPV of Doel‐3 and Tihange 2 were unambiguously assigned to hydrogen induced flaws (“hydrogen flakes“). 
01.2       Metallurgical considerations 
According to current knowledge hydrogen flakes may only form during manufacturing of the base metal. The formation of hydrogen flakes is a phenomenon well known to the steel manufacturers and may happen after cooling down the steel from high to ambient temperature, e.g. in the ingot after pouring or in the forged part after the forging operation and heat treatment. Flake formation is driven by the accumulation of hydrogen at segregations or inclusions in the metal. This accumulation of hydrogen is diffusion controlled, so the formation of flakes may have an incubation time of some days or even a couple of weeks at room temperature. 
Due to the main deformation direction during the forging operation, these segregations or inclusions are preferentially stretched in planes parallel to the surface of the forging leading to the formation of laminar hydrogen flakes of the same orientation. The formation of hydrogen flakes depends on a number of factors, the most important being the hydrogen concentration and the size of the ingot, both determining the possible accumulation of hydrogen. This makes large forgings most prone to flaking. Further important factors are a “sensitive” microstructure and the stress state. Despite these known dependences it appears difficult to exclude the formation of flakes in a large forging on the basis of these factors. Therefore, acceptance tests of the base material including appropriate UT is considered the most important step to assure that the parts are free of hydrogen flakes. Therefore the WENRA recommendations as well as the WENRA questionnaire specifically asked for the results of these tests.
Plate material is generally considered much less prone due to smaller ingot sizes and higher degrees of deformation during the rolling operation compared to forging. This results in a less sensitive microstructure. Therefore, components made from plates are outside the scope of further analyses and are not addressed in the recommendations by WENRA referred to below.  
The “flakes” are not considered as “cracks” however they represent a detachment or separation within the material that is assumed to have a similar detrimental effect on the mechanical behaviour of the component. In assessments of the structural integrity of the RPV the flakes are always modeled as cracks. 
01.3       The role of different inspections 
According to international practice, semi‐finished products, i.e. “forgings” or “plates”, are subjected to an acceptance tests before they are assembled (mainly welded) to a component. Considering the possible incubation time of the formation of flakes the acceptance tests of forgings are generally not performed before one month after completion of the forging operation and the “quality heat treatment”. According to international practice of the manufacturers parts showing clear indications of flakes are discarded and will not be assembled. 
These acceptance tests generally comprise UT with different inclinations of the beam to find flaws of any orientation or character. UT with straight beam (0°) is the most appropriate to find planar flaws parallel to the RPV surface such as hydrogen flakes. Besides, UT with angle beam, surface testing (e.g. with magnetic particles) and destructive mechanical tests are performed. This testing appears to be common practice of all manufacturers, at least since the 70ies. 
In general, more UT is performed after each welding operation, e.g. after joining the forgings by circumferential butt welds and after welding of the cladding onto the internal surface of the RPV. These post‐weld tests aim to check for flaws in the welding, including the interfaces and the heat affected zones in the adjacent base materials. These inspections do not repeat testing the full volume of the base metal again as no change is expected compared to the acceptance test of the semi‐finished parts. 
After completion of the components more inspections by UT are performed in the framework of ISI. In all countries the full volume of all axial and circumferential welds and the adjacent heat‐affected zones are inspected. In general the volume of the base metal is not inspected again during ISI, except at VVER plants, where some parts of the base metal are covered by UT (see chapter General Observations). 
Regarding the UT techniques, different inclinations of the beam may be used in order to find planar flaws in different orientations. UT with angle/straight beam is applied to search for flaws orientated nearly perpendicular/parallel to the RPV surface. Furthermore, the techniques may focus on certain zones within the component, e.g. zones close to the surfaces or close to mid‐wall. Any of the special techniques applied may also find flaws in other orientations or other zones not focused on, however with lower sensitivity and probability.  
In case of Doel‐3, the UT dedicated to find underclad cracks with angle beam and focus near the interface to the cladding accidentally found some of the hydrogen flakes that were relatively close to this interface. Yet, it did find only a minor part of all the flakes found later by the dedicated UT using straight beam focussing on various depths. The latter is the technique of choice to find hydrogen flakes and was also used for the acceptance tests of the semifinished parts. Other techniques are considered less appropriate to find any flaws parallel to the RPV surface and in the centre of the wall, where most of the hydrogen flakes are expected, if any. This has to be born in mind when evaluating the UT results of the pre‐ and inservice inspections (PSI and ISI).
02 The WENRA recommendation 
In response to the findings in the Belgian reactors, WENRA recommended in 2013 the nuclear safety authorities in Europe to request the licensees to verify the material quality and integrity of the RPV in a 2‐step approach: 
1.        A comprehensive review of the manufacturing and inspection records of the forgings of the RPV 
2.        Examination of the base material of the vessels if considered necessary. 
Furthermore, it may be considered by the national regulators to extend the scope of analysis to large forgings of other primary equipment.  
Early in 2014, the WENRA Technical Secretariat sent out a questionnaire to the nuclear safety authorities in order to receive some feedback on the actions taken in the member countries. After receiving information from all relevant member countries the status of the actions taken has been summarized

The issue has no relevance for NPP in Romania (pressure‐tube reactor) as well as for Lithuania and Italy (no NPP in operation).
 
The following general conclusions can be drawn from the different answers.  
Regarding step 1, a comprehensive review of the manufacturing and inspection records of the forgings of the RPV: 
       Most member countries had the manufacturing records checked for all or some of those RPV made from forgings. In case the records of some RPV were not checked yet, they are planning to do it until 2016 at the latest.  
       Some operators checked the records of all forgings of the RPV, others only those of the cylindrical rings of the RPV beltline. 
       In all cases where the documentation was checked, it contained sufficient information to conclude that acceptance tests were performed that were capable to find hydrogen flakes. 
       From all the documents that have been checked, member countries responded that either “no flaws”, “no notable (registered) indications”, “no notable indications similar to flakes” or “no unacceptable indications” were documented or found during UT.

Regarding step 2, from an additional examination of the base material of the vessels can be concluded that:
 
       Most member countries performed or planned to perform some kind of additional inspections in response to the findings in Doel‐3 during the upcoming regular ISI taking place every 4 to 10 years.  
       Most member countries decided to have inspected some sample of the cylindrical rings.  
       As far as the inspections were already performed, no indications similar to flakes were found with the engaged inspection technique.

Exceptions were Slovakia and Bulgaria operating VVER units with different kind of ISI programs covering also some parts of the base metal. They do not plan any additional inspections in response to Doel‐3. Yet, Slovakia is considering a re‐evaluation of the regular ISI program. Apparent differences in the ISI program of these countries with respect those following Western regulations are addressed in the following.
 
From the information received from Bulgaria and Slovakia, it appears that there is some significant difference in the scope and periodicity of the ISI performed at RPV of VVER plants (and possibly still following the original inspection plans) on the one hand and of Western PWR plants and those following Western regulations on the other hand: 
       While UT at RPV of Western type reactors is either performed from the inside (PWR plants) or from the outside (BWR plants) (with periodicity 4 to 10 years), UT is performed from the inside and outside in VVER plants. Periodicity at VVER 440 units is every 8 years for both sides with 4 year shift between both inspections, periodicity at VVER 1000 units is every 6 or 8 years from the inside and every 6 or 4 years from the outside. 
       Even more important appear the differences in the area covered by the UT: While all circumferential welds and the adjacent heat‐affected zones are inspected at the RPV of all units, some parts of the base metal are also covered in Slovak and Bulgarian VVER type units. 
In the following section 03.2 an overview of the activities is given country by country. A plant specific overview can be found in Annex 1.